Search results for "hydrophobic effect"
showing 10 items of 74 documents
Back to the oligomeric state: pH-induced dissolution of concanavalin A amyloid-like fibrils into non-native oligomers
2016
The subtle interplay between long range electrostatic forces, hydrophobic interactions and short range protein-protein interactions regulates the onset/evolution of protein aggregation processes as well as the stability of protein supramolecular structures. Using a combination of FTIR spectroscopy, light scattering and advanced imaging, we present evidence on the main role of electrostatic forces in the formation and stability of amyloid-like fibrils formed from concanavalin A (ConA), a protein showing structural homology with the human serum amyloid protein. At high protein concentration, where protein-protein interactions cannot be neglected, we highlight a thermal-induced aggregation pat…
2021
The hydrophobic tails of aliphatic primary alcohols do insert into the hydrophobic core of a lipid bilayer. Thereby, they disrupt hydrophobic interactions between the lipid molecules, resulting in a decreased lipid order, i.e., an increased membrane fluidity. While aromatic alcohols, such as 2-phenylethanol, also insert into lipid bilayers and disturb the membrane organization, the impact of aromatic alcohols on the structure of biological membranes, as well as the potential physiological implication of membrane incorporation has only been studied to a limited extent. Although diverse targets are discussed to be causing the bacteriostatic and bactericidal activity of 2-phenylethanol, it is …
Effect of short-chain alcohols on surfactant-mediated reversed-phase liquid chromatographic systems.
2010
The behaviour of β-blockers in a reversed-phase liquid chromatographic (RPLC) column with mobile phases containing a short-chain alcohol (methanol, ethanol or 1-propanol), with and without the surfactant sodium dodecyl sulphate (SDS), was explored. Two surfactant-mediated RPLC modes were studied, where the mobile phases contained either micelles or only surfactant monomers at high concentration. Acetonitrile was also considered for comparison purposes. A correlation was found between the effects of the organic solvent on micelle formation (monitored by the drop weight procedure) and on the nature of the chromatographic system (as revealed by the retention, elution strength and peak shape of…
Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.
2013
International audience; This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH = 7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH = 7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of …
A thermodynamic study to evidence the alpha,omega-dichloroalkane/ block copolymer mixed aggregates formation: effect of the copolymer architecture.
2006
Abstract The thermodynamics of α , ω -dichloroalkanes in aqueous solutions of (ethylene oxide)11(propylene oxide)16(ethylene oxide)11 (L35) and (propylene oxide)8(ethylene oxide)23(propylene oxide)8 (10R5) was determined at 298 and 305 K. Modeling the experimental data allowed to calculate the standard free energy ( Δ G D o / w ) and the volume ( Δ V D / w ) for the additive–copolymer mixed aggregates formation per additive molecule. Δ G D o / w for Cl2CH2 and Cl2(CH2)2 evidenced that the process is controlled by the forces exercising between the chlorine atoms and the OH groups of the copolymer micelles protruded into the aqueous phase. Cl2(CH2)3 experiences both the hydrophilic and hydrop…
Excess enthalpies of solution of primary and secondary alcohols in dodecyldimethylamine oxide micellar solutions
1987
The excess enthalpies of solution with respect to water of some primary and secondary alcohols in dodecyldimethylamine oxide (DDAO) micellar solutions were measured by mixing aqueous solutions of alcohols with surfactant solutions. Standard free energies, enthalpies and entropies were obtained from the distribution of alcohols between aqueous and micellar phases. It is shown that thermodynamics of transfer of secondary alcohols from aqueous to the DDAO micellar phase differ slightly from those of their corresponding primary alcohols, that the additivity rule holds for free energies of transfer and that enthalpy and entropy display convex curves. The present data are compared with those from…
NEW GRAFT COPOLYMERS OF HYALURONIC ACID AND POLYLACTIC ACID: SYNTHESIS AND CHARACTERIZATION
2006
Abstract New graft copolymers have been synthesized, using hyaluronic acid (HA) as a hydrophilic backbone and polylactic acid (PLA) as an aliphatic polyester in order to obtain new polymeric derivatives of HA able to hydrophobically associate in an aqueous medium. Hyaluronic acid with low molecular weight was made soluble in organic solvent by transformation to its tetrabutylammonium (TBA) salt. Using the HA–TBA derivative, the reaction was performed in dimethylsulfoxide adding as a reagent the N -hydroxysuccinimide derivative of PLA. Two HA–PLA graft copolymers have been synthesized and characterized by FT-IR, 1 H NMR spectroscopy and gel permeation chromatography. The interaction between …
Chromogenic Chemodosimeter Based on Capped Silica Particles to Detect Spermine and Spermidine
2021
A new hybrid organic–inorganic material for sensing spermine (Spm) and spermidine (Spd) has been prepared and characterized. The material is based on MCM-41 particles functionalized with an N-hydroxysuccinimide derivative and loaded with Rhodamine 6G. The cargo is kept inside the porous material due to the formation of a double layer of organic matter. The inner layer is covalently bound to the silica particles, while the external layer is formed through hydrogen and hydrophobic interactions. The limits of detection determined by fluorimetric titration are 27 µM and 45 µM for Spm and Spd, respectively. The sensor remains silent in the presence of other biologically important amines and is a…
N-Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment
2016
Host systems with guest binding ability in water and/or biological fluids are a current challenge in supramolecular host–guest chemistry. Here we present the first syntheses of water-soluble N-ethanol ammonium resorcinarene chlorides (NARCls) with terminal hydroxyl groups at the upper rim. The NARCls possess deep cavities and are shown to bind a variety of guest molecules such as linear and cyclic alkanes, linear halogenated alkanes, and aromatic fluorophores (naphthalene, p-(phenylazo)phenol) in water through hydrophobic interactions, as well as 1,4-dioxane (a water soluble guest) via hydrogen bonds. The receptors are monomeric in aqueous media and form 1:1 host–guest complexes with bindin…
Poloxamer/sodium cholate co-formulation for micellar encapsulation of Doxorubicin with high efficiency for intracellular delivery: an in-vitro bioava…
2020
Abstract Hypothesis Doxorubicin hydrochloride (DX) is widely used as a chemotherapeutic agent, though its severe side-effects limit its clinical use. A way to overcome these limitations is to increase DX latency through encapsulation in suitable carriers. However, DX has a high solubility in water, hindering encapsulation. The formulation of DX with sodium cholate (NaC) will reduce aqueous solubility through charge neutralization and hydrophobic interactions thus facilitating DX encapsulation into poloxamer (F127) micelles, increasing drug latency. Experiments DX/NaC/PEO-PPO-PEO triblock copolymer (F127) formulations with high DX content (DX-PMs) have been prepared and characterized by scat…